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Comments on the second call for evidence and information on Aromatic 

Brominated Flame Retardants 

28 June 2024 

The undersigned thank ECHA for the opportunity to provide comments for the second call for 

evidence on alternatives to aromatic brominated flame retardants (ABFR), with a focus on 

uses identified in the first call for evidence concluded in April 2024 for the preparation of the 

investigation report on flame retardants. The proposed Regulatory Strategy for flame 

retardants and the preparation of the investigation report are important steps towards a 

broad and grouped restriction approach for flame retardants, and for a better protection of 

health and the environment. However, it is not fully encompassing the actions needed to 

properly regulate flame retardants.  

We appreciate that the investigation report on flame retardants has been commissioned to 

ECHA by the European Commission in the framework of the ‘Regulatory Strategy for Flame 

Retardants’ published in March 2023. Article 69 of REACH states that the Commission shall 

ask ECHA to prepare a restriction dossier where it considers that the manufacture, placing on 

the market, or use of a substance on its own, in a mixture, or in an article poses a risk to 

human health or the environment that is not adequately controlled and needs to be 

addressed. This risk has already been largely identified, as exemplified by the first call for 

evidence and the large body of peer-reviewed scientific literature showing “that exposure to 

flame retardants increases risks of deleterious health effects including developmental and 

behavioural disorders, neurotoxicity, endocrine disruption, metabolic disruption, cancer, and 

many other effects” (Page et al., 2023). This justifies the need to start preparing a group 

restriction dossier for flame retardants without delay.  

The EU Restrictions Roadmap published in April 2022 identified brominated flame retardants 

as a priority group for restriction (European Commission, 2022) and the Regulatory Strategy 

for flame retardants acknowledged that “flame retardants with aromatic bromine are of a 

general concern due to their known or potential PBT/vPvB properties [and that] a wide and 
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generic restriction seems to be the most appropriate regulatory approach” (ECHA, 2023, p. 

34). It is crucial that the scope of the planned restriction encompasses all ABFR as well as 

their transformation and degradation products, which are also sources of concerns 

(Smollich et al., 2022). Moreover, other flame retardants, such as aliphatic brominated 

flame retardants, organophosphorus flame retardants (OPFR), polymeric flame retardants, 

recycled products containing flame retardants, should be included in the scope of a broad 

group restriction for flame retardants as they all share similar toxicological profiles, as 

underlined in our comments below.  

Beyond a broad and generic restricting approach to flame retardants, there is also an urgent 

need to rethink the way fire safety is ensured in the EU and for the efficacy of chemical flame 

retardants to be measured against the harms associated with exposure to toxic fumes and 

smoke during a fire, their overall toxicity, as well as the challenges associated with their end-

of-life.  

To this end, we would like to provide additional information to be considered for a more 

comprehensive restriction of flame retardants and for a broader reflection on how fire safety 

could be adequately ensured in Europe with much less use of harmful chemicals. We choose 

not to contribute to the Excel sheet accompanying the call for evidence as we do not support 

regrettable substitutions of ABFR by alternatives with possibly very similar profiles. We are 

calling for a discussion on fire safety going beyond this investigation report and restriction 

process with the European Commission and all relevant stakeholders. For example, studies 

by the U.S. Consumer Product Safety Commission (CPSC) and others have shown that 

eliminating the use of chemical flame retardants does not weaken fire safety1, and as a result, 

major manufacturers and retailers are already making and offering furniture without flame 

retardants, often at a lower cost. A recent study (Gill et al., 2024) demonstrates the positive 

impact and efficacy of this regulatory intervention, with environmental exposure to flame 

retardants expected to decrease. 

In particular, we would like to offer feedback on the following areas:  

● Recommended alternatives to flame retardants 

● Regrettable substitutes (non-halogenated flame retardants are not a safer 

alternative)  

● Benefit vs risk of flame retardants 

● Problematic end of life: disposal and recyclability of flame retardants.  

Recommended alternatives to flame retardants 

Substitution of hazardous flame retardants can happen at four different levels. 1) Drop in 

substitution of one chemical with another 2) Choosing a different material that does not 

 
1 Chemical Flame Retardant-Free Toolkit and Buyer’s Guide.pdf 

https://saicmknowledge.org/sites/default/files/resources/Chemical%20Flame%20Retardant-Free%20Toolkit%20and%20Buyer%E2%80%99s%20Guide.pdf
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require flame retardants 3) substituting the product with another product, achieving the 

required function through other measures and technologies or 4) keeping flammable material 

away from sources of flames. This was already acknowledged 20 years ago for example by the 

Swedish authorities (Kemi, 2003) and we urge ECHA to make sure to thoroughly cover all 

these possibilities, when assessing the availability of alternative solutions to using 

brominated flame retardants. For the latter points, restrictions with sufficiently long 

timelines could support a smooth transition. 

Considering the toxicity to human health, contribution to environmental pollution, and the 

limits to recyclability of products containing flame retardants, the best alternative for 

substitution is a product redesign approach, in line with the Ecodesign Directive 2009/125/EC 

and the recently adopted Ecodesign for Sustainable Products Regulation. The need for 

chemical flame retardants could be rendered unnecessary by rethinking the product design, 

for example, by using inherently flame-resistant materials such as vitreous fibres, metal, glass, 

hemp, and wool, especially in lieu of plastics that release toxicants when incinerated (Janssen, 

2005). 

For electronic products, a product redesign approach that aligns with the first step, 

Prevention, of the Waste Hierarchy (European Commission, 2008) is to separate highly 

flammable components from heat-generating components. Similarly, lower temperature 

generating components can be used to minimise the risk of fire (Janssen, 2005). 

For hospitals in the region, the Västra Götaland Regional Council in Sweden2 procures bed 

linen manufactured with natural flame-retardant fibres of the brand Trevira CS3 for their 

hospitals. Another example is the global furniture retailer IKEA who has removed all chemical 

flame retardants for the entire US market, beginning in 2015, by developing an interliner that 

enables fire-resistant products made of a dual layer carded non-woven material which slows 

down burning time and increases fire safety in their products4.  

Non-halogenated flame retardants are not a safer alternative  

Non-halogenated flame retardants, such as Organophosphorus flame retardants (OPFR) are 

increasingly used as replacement for brominated flame retardants and hailed as safer 

alternatives (Blum et al., 2019). There is however strong evidence that OPFR share similar 

concerns as ABFR. Despite OPFR being expected to be less persistent in the environment than 

ABFR, they have been detected at high levels in all environmental compartments, as well as 

in indoor dust and in monitoring programs (Blum et al., 2019, Hoffman et al. 2024, Liu et al. 

2024). Also, the results from the HBM4EU aligned studies found high detection frequencies 

of organophosphate flame retardants, as described in Van der Schyff et al (2023). The authors 

 
2 Email correspondence (2024) between Health Care Without Harm Europe and Region Västra Götaland. 
3 https://www.trevira.de/en/trevira-cs/flame-retardant-textiles 
4 https://www.ikea.com/global/en/our-business/our-view-on/flammability/ 

https://www.trevira.de/en/trevira-cs/flame-retardant-textiles
https://www.ikea.com/global/en/our-business/our-view-on/flammability/
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conclude that ´OPFR concentrations should be critically evaluated by regulatory institutions 

due to their high prevalence and indications of endocrine-disrupting effects. ´ 

From a toxicity standpoint, the scientific consensus indicates environmental and “health 

concerns for both halogenated and nonhalogenated OPFRs”, similar to brominated flame 

retardants (Blum et al., 2019). A growing body of evidence have demonstrated that OPFRs 

may be associated with carcinogenesis, neurotoxicity, adverse metabolic (Tan et al., 2024), 

reproductive (Kant Negi 2023), and neurodevelopmental effects (Cheng et al., 2024), adverse 

childhood respiratory outcomes (Mendy et al., 2024), and endocrine-disrupting activity (Yao 

et al., 2021; Ren et al. 2016, 2019, İyigündoğdu and Çok, 2024). Experimental animal models 

have also demonstrated that OPEs may lead to neurotoxicity, disruption of the endocrine 

system, developmental toxicity, adverse reproductive issues (Oh et al., 2024), effect on bone 

mineralisation (Guo et al., 2024), mental health disorders (Foster et al., 2024) and other 

systemic effects. 

A more comprehensive review of recent in vitro, in vivo, and human studies on the adverse 

effects of OPFRs and BFRs is included in an annex to this contribution (Annex 1). 

A group restriction for three OPFR, tris(2-chloro-1-methylethyl) phosphate (TCPP), tris(2-

chloroethyl) phosphate (TCEP), and tris[2-chloro-1- (chloromethyl)ethyl] phosphate (TDCP) 

has been on hold since 2019 due to carcinogenicity studies expected from the United States 

National Toxicology Program (US NTP). The results of the NTP studies were published last year 

showing TCPP caused cancer in mice (National Toxicology Program, 2023). Moreover TCEP, 

TCPP, and TDCP are included in three entries of the Restriction Roadmap, including regarding 

CMR properties in the entry on childcare articles.  

In the light of all these concerns, we find that a broad group restriction of both halogenated 

and non-halogenated flame retardants, including aliphatic brominated flame retardants is 

urgently needed to avoid regrettable substitution of aromatic brominated flame retardants 

with other substances with similar properties, and that the health and environmental effect 

of any potential alternatives to these flame retardants must be thoroughly evaluated.  

Benefit vs risk of flame retardants   

In its mandate to ECHA for the investigation report, the Commission stated that “the report 

should outline as far as possible which alternative substances or technologies are available 

that provide flame retardancy in the materials or for the uses in which currently aromatic 

brominated flame retardants are used.” We welcome this approach to move away from 

chemical alternatives to ABFR and we underline the need to favour materials which are non-

toxic throughout their entire life cycle, and with inherent fire-resisting properties to the use 

of flame retardants. Ironically, traditional materials were much less flammable than modern 

synthetic materials, and flame retardants which are ostensibly added to delay ignition have 

brought a raft of problems which we are still dealing with today. There is a growing body of 

evidence showing that “during a fire, some flame retardants may exacerbate yields of toxic 
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gases and smoke formed by burning foams which are a major cause of death” (Page et al., 

2023; Stec, 2017; McKenna et al., 2018, Lane and Hull, 2024). 

The use of gas phase flame retardants is particularly problematic in materials where flame 

retardants exacerbate the high flammability and smoke toxicity of these materials. For 

example, polyurethane foam is highly flammable and forms carbon monoxide, hydrogen 

cyanide and other toxic products on combustion (McKenna and Hull., 2016). Adding gas phase 

flame retardants exacerbates the yield of these toxic gases due to incomplete combustion 

(Lane & Hull, 2024). 

Building on the mandate of the Commission, we believe this report is an excellent opportunity 

to reconsider fire safety as a whole by taking into account the whole life cycle of flame 

retardants, by reconsidering materials used (such as insulation foam or soft furnishings), 

and to weigh the risk of fire against the increased potential health risk related to flame 

retardants. 

We would like to draw attention to the example of furniture, which is very informative in that 

regard. In an opinion from 2015 on the fire safety of domestic upholstered furniture, the 

French Agency for Food, Environmental and Occupational Health & Safety (ANSES, 2015) 

concluded that “data are insufficient to conclude that fire-retardant treatment of upholstered 

furniture significantly contributes to reducing the frequency and severity of domestic fires 

[and it] therefore seems impossible to determine the possible safety benefit of using flame 

retardants in upholstered furniture”. ANSES (2015) further advises against the generalisation 

of treatment for domestic upholstered furniture with flame retardants and advocates for 

“other measures to improve fire safety in housing that are likely to reduce frequency and/or 

severity, and that have proven their effectiveness in the countries where they have been 

adopted [to] be given preference and reinforced”. The same change is advocated for in the 

UK, where “there is a need to amend the [Furniture and Furnishings (Fire) (Safety) Regulations 

1988], to lead to reduced use of [chemical flame retardants] in furniture and the development 

of more sustainable alternatives. This push is underpinned by extensive and ever-growing 

research demonstrating the health risks and widespread environmental contamination posed 

by CFRs as well as new research into appropriate substitutes” (Page et al., 2023b). In the US, 

the State of Massachusetts has banned in 2020 several chemical flame retardants (including 

TCCP) from bedding, carpeting, and other products to protect children, families and 

firefighters.5 

The use of flame retardants should only be permitted where it is proven that they can actually 

contribute to enhancing fire safety. 

Disposal and recyclability of flame retardants.  

Reducing downstream impacts from flame retardants must be a key aspect of a future 

restriction of flame retardants, as articles treated with flame retardants are difficult to 

 
5 https://malegislature.gov/Laws/SessionLaws/Acts/2020/Chapter261 
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recycle, and often end up in landfill or are incinerated (Ma et al., 2021; Balasch et al., 2022, 

Page et al., 2023). Monitoring of halogenated flame retardant content is not cost-effective, 

resulting in many products having to be incinerated. Following ecodesign requirements, 

halogenated flame retardants are already banned in electronic displays due to their hindrance 

to a circular economy (Regulation (EU) 2019/2021). Adhering to the essential use concept 

(European Commission, 2024), the ban on halogen should be extended to all products where 

there are acceptable alternatives and where it is not necessary for health nor safety. 

We welcome the conclusion of the Regulatory strategy for flame retardants that “the 

release/exposure potential to hazardous brominated substances during dismantling, recycling 

and disposal operations may not be sufficiently controlled (or excluded), and [that] the 

presence of brominated flame retardants may encumber the move towards toxic-free material 

cycles, to achieve the objectives of Circular Economy” (ECHA, 2023). This conclusion extends 

to all problematic flame retardants and is corroborated by independent literature (Page et al., 

2023) with the possible consequence of these chemicals inappropriately ending up “in 

recycled goods such as cookware” (Strakov´a et al. 2018). 

We encourage ECHA to make this aspect a key consideration and to recommend including 

recycled materials in the scope of the restriction. Going further, it is key that the European 

Commission ensures that products manufactured with recycled materials comply with the 

same standards as those of substances used in primary materials in order to achieve a non-

toxic, circular economy. 

Conclusion 

In the light of the hazardous properties of both halogenated and non-halogenated flame 

retardants and the difficulties in handling materials treated with flame retardants during the 

end-of-life and recycling phase, we urge ECHA to recommend as fast as possible a broad 

group restriction encompassing all hazardous flame retardants, giving preferences to 

materials which are non-toxic throughout their entire life-cycle, and with inherent fire-

resistant properties (such as stone or glass wool, or natural fibre-based insulation) over 

chemical flame retardants, and restricting the use of flame retardants where they are not 

required by regulatory standards and where other measures to improve fire safety can be 

implemented. Following up on the conclusion of McKenna and Hull (2016) materials treated 

with reactive flame retardants should not be regarded as inherently fire-resistant materials. 

Moving forward, as already initiated by some countries and companies, it is also critical to 

reconsider existing fire safety standards and to consider the efficacy of flame retardants in 

mitigating the risk of fire weighed against the increased potential health risk related to 

flame retardants. Reports are showing that some flame retardants are aggravating factors in 

case of fire due to toxic gases and smoke formed by burning foams which are a major cause 

of death (Page et al., 2023; Stec, 2017; McKenna et al., 2018, Lane and Hull, 2024). 
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There is an urgent need to change perspective about fire safety and to move from a 

chemical discussion to a material science discussion. We urge ECHA and the European 

Commission to build on the Regulatory Strategy for flame retardants to reconsider fire safety 

regulation in the EU as a whole and to move toward fire prevention standards that do not 

present risks for health and the environment, using different materials coupled with other 

prevention measures. 

 On behalf of: 

Health and Environment Alliance (Contact person: Basile Ghesquiere, basile@env-health.org) 

Cancer Prevention and Education Society (Contact person: Jamie Page, 

jpage@cancerpreventionsociety.org) 

Zero Waste Europe (Contact person: Dorota Napierska, dorota@zerowasteeurope.eu) 

CHEM Trust (Contact person: Ninja Reineke, ninja.reineke@chemtrust.org) 

Health Care Without Harm Europe (Contact person: Akif Görgülü, agorgulu@hcwh.org)  

Fidra (Contact person: Joanna Cloy, Joanna.Cloy@fidra.org.uk) 

ChemSec (Contact person: Sidsel Dyekjær, sidsel.dyekjaer@chemsec.org ) 

European Environmental Bureau (Contact person: Dolores Romano, dolores.romano@eeb.org) 
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